Find the best Large Language Models (LLMs), RAG & Agent frameworks, and AI news tailored for the Japanese market.
Allows users to discover various LLMs, RAG frameworks, and agents specifically designed for the Japanese market.
Provides the latest news regarding AI models and frameworks, keeping users informed about developments in the AI space.
Ranks the best AI models based on performance scores, helping users to choose the right model for their needs.
Provides detailed comparisons of the latest large language models and their features.
Offers a curated list of frameworks and tools for retrieval-augmented generation.
Lists top frameworks for building AI agents.
Compiles relevant websites, tools, and learning resources related to AI.
Analyzes code, README, and configuration files to generate interactive documentation.
Provides a conversational interface for user inquiries regarding the code repository.
Supports multiple programming languages for broader use.
Offers quick scan for complex queries and detailed research mode for in-depth analysis.
最新のAIモデルの性能を比較し、各モデルのスコアを表示します。
lmarenaやopen_llm_leaderboardを基にした客観的な評価基準によるパフォーマンス分析。
ユーザーが特定のタスクやモデルの情報にアクセスできるように、詳細なフィルター機能を提供。
多様なソースからデータを収集し、前処理を行うことができます。
テキストを埋め込みモデルを用いてベクトルに変換し、保存します。
ユーザーのクエリに対して、類似度の高いデータをベクトルデータベースから取得します。
取得した情報を基に、生成された回答を提供します。
AIエージェントが特定の目標達成のために自律的に行動できるシステムを提供します。
複数のAIエージェント間の協調動作を実現するフレームワークを備えています。
複雑なワークフローを自動化し、様々なタスクを実行します。
データの収集、クリーニング、分析を自動的に行い、洞察を提供します。
最新のAIリソース、ツール、フレームワークに関する情報を提供する.
視覚的に学ぶためのビデオチュートリアルやデモを提供.
最新のAI研究や論文を収集し、提供.
Analyzes GitHub repositories, generating detailed documentation that explains the project's purpose, architecture, key files, and dependencies, presented in a clear, Wikipedia-like format.
Creates clickable, interactive graphs that intuitively display the structure of the code repository, including class hierarchies, dependency graphs, and project workflows.
Powered by Cognition AI, allows users to ask questions about the documentation or code snippets directly, receiving context-aware, accurate responses.
Offers advanced analytical capabilities to detect potential bugs, suggest performance optimizations, and compare features with similar projects.
Users can search for products using natural language queries and receive tailored recommendations, images, and direct purchase links.
Based on the GPT-4o model, it can handle text, images, and other data formats to produce visual search results.
ChatGPT search functionality has been extended to WhatsApp, allowing users to query for real-time results through the app.
Automatically displays trending search suggestions as users start typing queries, similar to Google’s autocomplete.
Provides customized shopping recommendations based on previous chat history.
Offers two reasoning modes: Thinking Mode for complex tasks utilizing more resources for deep thinking, and Non-Thinking Mode for quick responses to simpler questions.
Supports 119 languages and dialects, covering major language families including Indo-European, Sino-Tibetan, and Afro-Asiatic.
Deeply optimized capabilities for code generation and decision-making, with seamless integration into the Qwen-Agent framework for tool calls and multi-turn dialogue.
Build systems that answer questions based on data sources such as documents and websites.
Create intelligent chatbots that respond based on internal data and product information.
Automatically generate reports, articles, and summaries based on existing data sources.
Construct systems that effectively search large volumes of documents for relevant information and extract insights.
Efficiently connects various data sources to large language models to enhance the context and accuracy of generated responses.
Creates systems that efficiently search through large quantities of documents and data to extract relevant insights.
Allows for the construction of complex RAG applications through flexible pipelines and components.